A novel IRS-1-associated protein, DGKζ regulates GLUT4 translocation in 3T3-L1 adipocytes

نویسندگان

  • TingYu Liu
  • BuChin Yu
  • Mamoru Kakino
  • Hitoshi Fujimoto
  • Yasutoshi Ando
  • Fumihiko Hakuno
  • Shin-Ichiro Takahashi
چکیده

Insulin receptor substrates (IRSs) are major targets of insulin receptor tyrosine kinases. Here we identified diacylglycerol kinase zeta (DGKζ) as an IRS-1-associated protein, and examined roles of DGKζ in glucose transporter 4 (GLUT4) translocation to the plasma membrane. When DGKζ was knocked-down in 3T3-L1 adipocytes, insulin-induced GLUT4 translocation was inhibited without affecting other mediators of insulin-dependent signaling. Similarly, knockdown of phosphatidylinositol 4-phosphate 5-kinase 1α (PIP5K1α), which had been reported to interact with DGKζ, also inhibited insulin-induced GLUT4 translocation. Moreover, DGKζ interacted with IRS-1 without insulin stimulation, but insulin stimulation decreased this interaction. Over-expression of sDGKζ (short-form DGKζ), which competed out DGKζ from IRS-1, enhanced GLUT4 translocation without insulin stimulation. Taking these results together with the data showing that cellular PIP5K activity was correlated with GLUT4 translocation ability, we concluded that IRS-1-associated DGKζ prevents GLUT4 translocation in the absence of insulin and that the DGKζ dissociated from IRS-1 by insulin stimulation enhances GLUT4 translocation through PIP5K1α activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tumor necrosis factor (TNF)-α-induced repression of GKAP42 protein levels through cGMP-dependent kinase (cGK)-Iα causes insulin resistance in 3T3-L1 adipocytes.

Insulin receptor substrates (IRSs) have been shown to be major mediators of insulin signaling. Recently, we found that IRSs form high-molecular weight complexes, and here, we identify by yeast two-hybrid screening a novel IRS-1-associated protein: a 42-kDa cGMP-dependent protein kinase-anchoring protein (GKAP42). GKAP42 knockdown in 3T3-L1 adipocytes suppressed insulin-dependent IRS-1 tyrosine ...

متن کامل

Dehydroepiandrosterone stimulates glucose uptake in human and murine adipocytes by inducing GLUT1 and GLUT4 translocation to the plasma membrane.

Dehydroepiandrosterone (DHEA) has been shown to modulate glucose utilization in humans and animals, but the mechanisms of DHEA action have not been clarified. We show that DHEA induces a dose- and time-dependent increase in glucose transport rates in both 3T3-L1 and human adipocytes with maximal effects at 2 h. Exposure of adipocytes to DHEA does not result in changes of total GLUT4 and GLUT1 p...

متن کامل

Platelet-derived growth factor inhibits insulin stimulation of insulin receptor substrate-1-associated phosphatidylinositol 3-kinase in 3T3-L1 adipocytes without affecting glucose transport.

Phosphatidylinositol 3-kinase (PI3K) activation is necessary for insulin-responsive glucose transporter (GLUT4) translocation and glucose transport. Insulin and platelet-derived growth factor (PDGF) stimulate PI3K activity in 3T3-L1 adipocytes, but only insulin is capable of stimulating GLUT4 translocation and glucose transport. We found that PDGF causes serine/threonine phosphorylation of insu...

متن کامل

Insulin-mediated GLUT4 translocation is dependent on the microtubule network.

The GLUT4 facilitative glucose transporter is recruited to the plasma membrane by insulin. This process depends primarily on the exocytosis of a specialized pool of vesicles containing GLUT4 in their membranes. The mechanism of GLUT4 vesicle exocytosis in response to insulin is not understood. To determine whether GLUT4 exocytosis is dependent on intact microtubule network, we measured insulin-...

متن کامل

Activation of the mammalian target of rapamycin pathway acutely inhibits insulin signaling to Akt and glucose transport in 3T3-L1 and human adipocytes.

The mammalian target of rapamycin (mTOR) pathway has recently emerged as a chronic modulator of insulin-mediated glucose metabolism. In this study, we evaluated the involvement of this pathway in the acute regulation of insulin action in both 3T3-L1 and human adipocytes. Insulin rapidly (t(1/2) = 5 min) stimulated the mTOR pathway, as reflected by a 10-fold stimulation of 70-kDa ribosomal S6 ki...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016